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We present an algorithm for carrying out time-dependent canonical Monte Carlo simulations on a lat-
tice with single occupancy of each site and arbitrary site-site interactions. The method incorporates ve-
locities at each site whose components are proportional to the probability of exchange with each of the
neighboring sites. Kinetic and potential energy are exchanged through the choice of trial final velocities
for attempted exchanges which are accepted or rejected using the Metropolis algorithm. Caculations are
carried out for the two-dimensional Ising model for which the exact partition function is known. Our
method reproduces the results of standard Monte Carlo simulations with comparable accuracy, and in
addition allows the calculation of dynamical properties previously inaccessible with traditional methods.
Results are presented for self-diffusion, interfacial tension, and shear viscosity.

PACS number(s): 05.50.+q, 66.10.Cb, 68.10.Cr

I. INTRODUCTION

In the modeling and computer simulation of complex
classical fluids, it is often necessary to compromise be-
tween the detail required to describe interesting physical
phenomena and the simplicity required for computational
efficiency. There are two principal methods currently in
use, molecular dynamics and Monte Carlo, each of which
has advantages and disadvantages [1].

Molecular-dynamics (MD) calculations provide the
most complete information on the system, and have the
advantage of being an essentially exact solution of the
classical equations of motion with constant energy and
volume. MD simulations thus have an explicit time
dependence and can be used to calculate both static and
dynamic properties of a system. This method can also be
modified to simulate constant temperature and pressure
ensembles and to simulate nonequilibrium conditions
such as shear flow. The practical limitations of MD arise
from the need to calculate continuous forces and torques
and to integrate the equations of motion using a very
short (typically ~107 1% s) time step. For a system con-
taining multiple components of different sizes and rapidly
varying forces on a number of length scales, the simula-
tion may be very slow relative to motion of interest and it
may be difficult to obtain accurate ensemble averages.
Methods such as the use of multiple time steps and coor-
dination shells can reduce these problems, but they
remain a significant limitation. Furthermore, in systems
with longer-ranged forces it may require a very large
number of particles to simulate a system larger than all
potential cutoff distances and relevant correlation
lengths.

These difficulties can be partially overcome in Monte
Carlo (MC) simulations. In this case there is no meaning-
ful time and it is not necessary to calculate forces. The
configuration is updated according to the potential ener-
gy alone, and in principle there is no limitation on the
types of moves that may be attempted. This method has
the advantage of being computationally simpler, and be-
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ing able to sample configuration space much more
efficiently. It also allows moves which are “unphysical”
such as particle insertion in a grand-canonical simulation.
It has the major drawback of not being able to calculate
any time-dependent quantities such as velocity and pres-
sure autocorrelation functions. Methods exist such as
force-bias Monte Carlo and Langevin dynamics which
combine elements of MC and MD for continuum sys-
tems; however, one major application of the MC method
is for discrete lattice models for which there is no analog
of MD in the sense that there are no continuous equa-
tions of motion that can be integrated. Lattice models
lack the detailed interaction of continuum models, but
their simplicity makes them very well suited for comput-
er simulation where the calculation of the potential ener-
gy can be made highly efficient. Since the range of in-
teractions is typically only one or two lattice spacings, it
is easy to carry out simulations which are large relative to
the important correlation lengths, even for highly com-
plex or near-critical systems. Furthermore, the discrete
motions of the particles are in steps on the order of the
molecular diameter, which would take a large number of
iterations to achieve in a continuous system. Although
such a coarse-grained model sacrifices much of the micro-
scopic detail of real molecules, there are many systems
where the interesting behavior occurs on time scales and
length scales for which this is the only tractable ap-
proach.

In particular, the present work was inspired by a lat-
tice model of microemulsion recently developed by the
present authors [2]. Despite greatly simplified interac-
tions, the model reproduces a large number of complex
phases and microstructures found experimentally. It is of
considerable interest to calculate dynamical and none-
quilibrium properties of such a system, but continuum
MD calculations even with very crude potential functions
have proven to be very difficult and time consuming [3],
and with more detailed models it is almost impossible to
simulate a system large enough and over long enough
times to study equilibrium phase behavior [4]. Our goal
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is to incorporate into the existing lattice model realistic
motions and time dependence to allow calculation of
dynamical properties of the system which are not
currently accessible. We also require that the equilibrium
state of the dynamical model should coincide with that of
the original lattice model.

Recently, much work has been done in developing
lattice-gas cellular-automaton (LGCA) models [5] based
on the pioneering work of Frisch, Hasslacher, and
Pomeau [6] (FHP) in which the sites on a lattice possess
discretized velocities which specify the neighboring site
to which each particle will move during the following
time step. In models of this type, there is a small density
of occupied sites which propagate into neighboring va-
cant sites. If two or more particles move to the same va-
cant site, they collide, and simple collision rules are used
to specify the directions in which they leave the site in
the next step, thus including elastic scattering in the
model. Multiply occupied sites are allowed subject to the
condition that each particle on a site have a unique veloc-
ity. Variations also exist in which there are rest particles,
higher mass particles, and diagonal (higher speed) moves.
The power of this method lies in its computational sim-
plicity. It is a true cellular automaton, since the state (oc-
cupation and velocities) of a site is uniquely determined
by the states of its neighbors in the previous step, and can
thus be programmed using very efficient parallel and vec-
tor algorithms based on integer arithmetic. As a result,
very large systems can be simulated, and it has been
shown that upon coarse graining the model reproduces
hydrodynamic behavior described by the Navier-Stokes
equation.

Another method has been developed, maximally
discretized molecular dynamics (MDMD) [7], in which
the particles behave as hard hexagons and are con-
strained to single occupancy on a triangular lattice. If a
particle attempts to move to an occupied site, it remains
at its original site and the velocities of the two colliding
particles are scattered prior to the next move. The moves
are attempted sequentially, and clusters of three or more
particles are dealt with in random order as a series of
pairwise collisions. The model is thus a crude description
of a dense fluid, but at low densities of occupied sites it
reproduces the behavior of hard disks with orders of
magnitude less computing time than standard MD simu-
lations.

These models are limited, however, by the fact that
they describe explicitly ‘“hard” particles, and possess no
potential energy. Realistic fluid behavior is thus obtained
solely from the simple collision rules that specify the
model. Our aim then is to extend the idea of site veloci-
ties on a lattice to the case where the particles interact
via an Ising-type lattice Hamiltonian, and thus bridge the
gap between MC and MD simulations for models de-
scribed on a lattice.

II. DEVELOPMENT
OF THE DYNAMICAL MC ALGORITHM

The fundamental difference between our approach and
that of previous LCGA models is thus the inclusion of
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nontrivial interparticle interactions. Some researchers
have developed models with primitive interactions that
possess phase transitions and phase boundaries [8], how-
ever, by introducing a meaningful temperature (or energy
scale) they are necessarily no longer purely deterministic,
but possess collisions with temperature-dependent ran-
dom outcomes. Furthermore, in order for the potential
energy to be defined by an Ising-type Hamiltonian it is
necessary that each site be occupied by exactly one parti-
cle or state. The condition that there be no vacant or
multiply occupied sites immediately implies that the
motions of the particles cannot be independent. That is,
any movement must be in a closed loop of two or more
sites such that the occupation of each site is conserved.
This introduces to the system a frustration in the sense
that the deterministic motions of the particles cannot be
simultaneously satisfied within this constraint. This is a
significant distinction between the present problem and
LGCA or MD algorithms. It means that any velocities
attributed to the lattice sites cannot uniquely determine
the motions of the particles independently of the other
site velocities. Methods have been proposed to address
this issue in which the selected exchange of particles is
optimized in some sense [9], however, in the present mod-
el we wish to have not the optimal outcome of collisions,
but rather a Boltzmann distribution of all possible out-
comes. Again, this requires collision rules that are proba-
bilistic in nature. A method has been proposed [10] in
which the random outcomes are “frozen” in advance re-
sulting in a deterministic simulation; however, this
creates a frustrated system which fails to reproduce equi-
librium structure.

For simplicity, we consider only the exchange of
nearest-neighbor sites as the basic update of the lattice.
Each time step thus consists of a trial exchange of each
pair of nearest neighbors in the lattice. These are con-
sidered to be independent and are updated in a pseu-
dorandom sequence. Since the neighbors of each pair are
required in the evaluation of the potential energy, nearby
pairs are not actually independent. The update sequence
must ensure that dependent pairs are not updated simul-
taneously and this can be achieved by dividing the lattice
into noninteracting sets of paired sites in a parallel com-
putation [11]. The fact that each site has several neigh-
bors with which it must be separately paired can be dealt
with in a similar manner.

The necessary “collision” rules can thus be reduced to
a decision of whether or not to exchange a specified pair
of sites. A method has been introduced by Creutz [12], in
which a kinetic energy is assigned to each site on a lattice
and single spin flips are carried out if the kinetic energy is
larger than the increase in potential energy for the spin
flip. This model is completely deterministic, simply by
specifying that the total energy is conserved in each spin
flip and that all possible spin flips will be made. We pro-
pose to consider a pair of sites in a similar fashion, where
the kinetic energy of the pair can be used to supply the
potential energy required for an exchange. Accordingly,
we define the site velocity v as an internal variable which
possesses an energy, %mvz, that is in equilibrium with the
potential energy of the lattice at a specified temperature.
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This is interpreted as a kinetic energy with
(%mvz) =kyT. In this way, the velocities can be regard-
ed as a heat bath or energy reservoir coupled to the lat-
tice which leads to more realistic dissipation of the
configurational energy.

The requirement that the dynamical model duplicate
the equilibrium properties of the system as defined by the
conventional Hamiltonian implies that the distribution of
configurations must be according to the Boltzmann prob-
ability which is determined by the potential energy as in a
standard MC simulation. Combined with the required
Boltzmann distribution of total energies, this implies a
Maxwell-Boltzmann distribution of velocities. The total
energy distribution is thus factored into its kinetic and
potential parts. This distribution is specified by using the
Metropolis algorithm to accept or reject trial changes in
the total energy. As a result, a choice of trial velocities
which preserves the Maxwell-Boltzmann distribution will
also imply the correct distribution of the potential ener-
gy.
The change in potential energy is determined by the
configuration, so the selection of a trial change in total
energy allows us the freedom to select the amount of en-
ergy that can be exchanged between the kinetic and po-
tential components. This freedom can be used to enforce
an additional condition on the choice of velocities. Since
we are interested in the motions of the sites, we choose to
specify that the probability of a site moving in a given
direction be proportional to the component of its velocity
in that direction. This condition, along with the definition
of kinetic energy, identifies the velocities introduced in
the model with the properties of real velocities to the ex-
tent permitted by the constraints outlined above. These
velocities determine the number of time steps required,
on average, for the particle (or particles) on a site to move
(by whatever mechanism) to a specified neighboring site.
Any connection between this velocity and the real parti-
cle velocities on a scale smaller than a lattice spacing is
less clear and will not be addressed here.

For any trial exchange, we need only consider the com-
ponent of the velocity in the direction of the proposed
motion, namely, the lattice vector separating the sites.
This is equivalent to the assumption that any forces be-
tween the sites act along this axis. In addition, since the
probability of an exchange must take into account both
of the individual probabilities for each site to move into
the position of the other, we consider the relative velocity
between the sites as the basis for determining the ex-
change probability. Leaving the center-of-mass velocity
unchanged trivially enforces the required conservation of
linear momentum for the exchange, which preserves the
condition that (v ) =0. The resulting trial velocities can
thus be described by a single scalar quantity, the com-
ponent of the relative velocity along the axis of the pair,
with all other components of the velocities conserved.

The master equation for the relative velocity in equilib-
rium can be written

dP (v) — el ’ ’ ’ _ "] —=
= T P o) = P)W (0 —0)]=0,

(1
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where P (v) is the probability of a pair having relative ve-
locity v and W (v—v’) is the transition probability for
the velocity to change from v to v’. Since we wish to
have the trial final velocity uniquely determined by the
initial velocity we can write it as some, as yet unknown,
f (v), and thus

W —v')<vd(v'—f(v)), (2)

which states that the probability of exchange is propor-
tional to v, subject to the constraint that v’ = f (v).

In addition, we wish to introduce a condition of micro-
scopic reversibility, that is, a collision which changes the
velocity from v to v’ if run backwards in time would
change the velocity from v’ back to v. This is true, of
course, for real systems obeying Newton’s laws, but due
to the probabilistic nature of the present model can only
be true in an average sense. However, this requires that
if v'=f(v), in the reverse collision v =f(v’) and hence
f=f"'. This condition, along with Eq. (2), can be sub-
stituted into Eq. (1) to yield

vP(v)dv==xv'P(v')dv’ (3)

after carrying out the v’ integration. We note at this
point that the velocity distribution is factorable into in-
dependent terms corresponding to each coordinate and
we can use the simple result for the relative velocity that
P (v)<exp(—Buv?/2) where p is the reduced mass of the
pair and B=1/kgT. We can substitute this into Eq. (3)
and use the boundary condition that v and v’ must always
be positive real numbers to find two solutions. If the pos-
itive sign is chosen in Eq. (3), we obtain the trivial result
v =v’. If the negative sign is chosen we obtain the solu-
tion

;BM 4)
2

exp =1—exp

—Buw
2

We thus propose to use Eq. (4) to define v'= f(v) which
selects the outcome of a trial exchange and modifies the
particle velocities if the exchange is accepted. Since this
equation uniquely determines the change in kinetic ener-
gy for the exchange of a pair of sites, it completes the
definition of the algorithm as outlined earlier in this sec-
tion.

Only pairs with an initial v that is positive (i.e., the par-
ticles are moving toward each other) are considered for
exchange, since pairs with negative v will not be expected
to interact in the time step under consideration. On
physical grounds, however, we would expect particles
which successfully exchange to continue moving apart
after the exchange, and those for which the exchange is
rejected to “bounce’ apart in an elastic collision. In ei-
ther case, the final relative velocity will have changed
sign. It is therefore necessary in order to maintain de-
tailed balance that pairs with initial negative v end up
with positive v even though no collision occurred. This
can be thought of as a reflection of the constraint that
both particles remain on the same sites during the update
(i.e., they have an average relative velocity of zero during
the time step), or of elastic collisions with their surround-
ing neighbors with which they are unable to interact.
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FIG. 1. Potential energy (in units of J) as a
function of temperature (in units of Jkz').
Solid symbols represent results from the
dynamical MC algorithm and open symbols
represent results of standard canonical MC
simulations. Circles correspond to zero mag-
netization and squares correspond to exact
single-phase magnetization below the critical
point. The solid line is the exact value. Error
bars for the dynamical MC results correspond
to the standard deviation of three independent
simulations. All simulations consist of 10° lat-
tice passes with 100? sites. Open symbols and
error bars where not visible are coincident
with the solid symbols.

lllllllllIlllJllllIlIllll

1.6 1.8 2.0 2.2 2.4_l
Temperature (J kg )

Note that on subsequent passes through the lattice the
pairing of sites will be different and the particles will still
on average be able to move in the direction of their veloc-
ities, as desired.

III. RESULTS FOR THE TWO-COMPONENT
LATTICE GAS (ISING MODEL)

As a simple test of the dynamical MC algorithm, we
performed a series of calculations on the two-dimensional
Ising model, described by the Hamiltonian

H=—-J 3 o0.,0.

(n,n’)

{o}==%1 (5)

for which the exact partition function is known [13]. For
simplicity, we assigned equal masses to the two com-
ponents, and interpret the model as a binary fluid mix-
ture. We also set the chemical potentials to be equal
(zero magnetic field) and carry out simulations at fixed
composition. Simulations were performed on a 100X 100

I
®
©
o

square lattice with periodic boundary conditions. Each
pass through the lattice consisted of one ‘““collision” for
every pair of neighboring sites. Results are presented in
terms of the parameters which define the coupling
strength J; site mass m; and lattice spacing /.

This distribution of site velocities was calculated and
verified to be indistinguishable from the exact Maxwell-
Boltzmann distribution over intervals an order of magni-
tude shorter than the equilibration time of the
configuration. Calculated values of (B/N){E;) and
(B2/N){E})—{E;)? typically deviated from unity by
less than 0.001 and 0.01, respectively, over most runs
during which statistics were collected. The potential en-
ergy was found to equilibrate more slowly than in con-
ventional canonical or grand-canonical simulations, how-
ever, reasonable results were obtained for runs consisting
of 100000 lattice passes taking ~7 h on an IBM RS6000
computer workstation. Calculated energies and heat
capacities are plotted in Figs. 1 and 2, along with results
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FIG. 2. Heat capacity as a function of tem-
perature. Symbols are defined as in Fig. 1.
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FIG. 3. Instantaneous configurations of the lattice from simulation. Each plotted square represents a 2 X2 block of sites on the
lattice. Squares are shaded from light to dark according to the number of light sites in the block from O to 4. Arrows represent the
direction and magnitude of the average velocity of the sites in the block. (a) T=2.0, (b) T =2.5.
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of conventional canonical MC calculations and the exact
values. Results below T, are shown for equal concentra-
tions with phase separation, and with the exact single-
phase mole fraction as input. Although this is known
analytically in this case, it could in general be determined
from grand-canonical simulations. These results indicate
that the potential and kinetic energy distributions are
equilibrated independently and that the separation of the
two in deriving the algorithm is valid. It is important to
note that below 7, the one-phase -calculations
significantly underestimate the heat capacity, although
the energy is correct. This is due to the fact that with
fixed concentration there are very few sites of the scarce
component and this limits the scale of the fluctuations
which occur. With phase separation, there is an interfa-
cial contribution to the energy but the heat capacity is
much closer to the correct value. This is because the
two-phase coexistence allows for an essentially grand-
canonical simulation of each phase. The heat capacity
near T, is underestimated by all methods, but this is due
to the nature of critical fluctuations and it has been
shown for standard MC simulations that longer runs and
the use of finite-size scaling can provide much better esti-
mates. The pair-correlation function g(n)={(c(0)o(n))
was also calculated and matches that obtained by conven-
tional methods, confirming that the equilibrium structure
has been correctly simulated. Typical configurations of
the lattice are shown in Fig. 3 for temperatures above and
below the critical point.

IV. VELOCITY AUTOCORRELATION FUNCTIONS
AND SELF-DIFFUSION

The velocity autocorrelation function (ACF) can be
calculated in two ways: directly from the velocities as
(v(0)-v()), and indirectly from the particle displace-
ments as 3*([r(¢)—r(0)]?) /3z%. In a Newtonian system
where v =dr/dt these definitions are identical. In the
present model, however, it is important to note that { Ar)
for a particular exchange is determined by the relative ve-
locity and not by the individual site velocities. Because
of this, {(v(0)-v(z)) has a component due to the pair
center-of-mass velocities which is not reflected in the re-
sulting motion. For the remainder of this discussion, the
velocity ACF will be defined as 82{[r(¢)—r(0)]?) /32 so
as to accurately describe the diffusion of the sites.
Representative velocity ACF’s are shown in Fig. 4.
These functions show a deep minimum at short times on
the order of a few time steps with a tail extending to
longer times. This backscattering effect is a common
characteristic of dense fluids, but it is expected that the
long-time tail should ultimately be positive and propor-
tional to ¢ ! for a two-dimensional fluid [14]. The pres-
ence of a negative velocity ACF extending to times much
longer than typical collision times has been observed in
MD simulation, and found to be more pronounced at
high density [15]. Since the present model is essentially
close packed, the results are consistent with this observed
intermediate time scale. More detailed theoretical studies
of mode coupling have indicated that while the dominant
contribution to the long-time tail must ultimately be posi-
tive, there are other long-range contributions which are
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opposite in sign [16]. In the present case, the crossover
between these competing terms may occur at times where
the values of the velocity ACF are too small to be reason-
ably measured.

The velocity ACF’s can be fit to the asymptotic form

¥ [r(t)—r(0)]*) _
ot?
over the observable time of the simulation. Some
representative values of the parameters ¢ and a are
shown in Table I. The results are shown for simulations
with (o )=0. For (o) ~=1, the system is essentially
noninteracting and the correlations decay too rapidly to
be reasonably characterized.
In two dimensions, where the integral

D=1 [ “di(v(0)v(n) (7)

—ct @ (6)

diverges, the diffusion constant D is not well defined.
Self-consistent definitions derived from mode-coupling
theory have been proposed [17]; however, in the present
case we proceed more directly by using the definition of a
time-dependent diffusion constant

_ 1 3([r(1)—1(0)]*)
4 ot

and calculating D (¢) for a fixed time that is long enough
to be representative of the limiting transport behavior.
In practice, we chose to define the diffusion constant as
the average value of D (¢) in the interval 1000 < ¢ < 1200.
The root-mean-square displacement of the particles in
this time interval is typically ~ 30 lattice spacings in each
coordinate direction from their positions at ¢ =0. This is
a distance which is large relative to typical correlation
lengths, but small enough so that the periodic boundary
conditions have negligible effect. Diffusion constants cal-
culated in this manner are shown in Fig. 5. As a compar-
ison, we also calculate the diffusion constants in the same
way using a standard canonical MC algorithm with no
site velocities, but with the same number of attempted ex-
changes per time step as in the dynamical algorithm. In
this case, the effective velocity ACF’s decay much more
rapidly and the diffusion constants are much larger, as
shown in Fig. 5. Both curves show a distinct minimum
just above T, as a result of the enhanced structural fluc-
tuations which serve to constrain the motions of the par-
ticles. The results from canonical MC are qualitatively
similar, but show a greater increase with increasing tem-
perature. The results presented in Fig. 5 are for the sym-
metric case where (o )=0. Single-phase simulations

D (1)

(8)

TABLE 1. Fit parameters for the long-time tails of the veloc-
ity ACF.

Temperature (units of J/kg) In[c /(site/step)?] a
1.5 4.3 0.52
1.8 4.2 0.56
2.1 3.7 0.70
2.4 2.0 1.15
2.7 1.2 1.50
3.0 1.3 1.60
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below T, have significantly higher diffusion constants for
the rich component. The diffusion of the scarce com-
ponent was not studied due to the much poorer statistical
accuracy, but it would be expected to be small, and in-
crease sharply through the critical point. Dynamical
studies of this and related percolation phenomena will be
reported in the future.

V. CALCULATION OF PRESSURE
AND INTERFACIAL TENSION
We define the pressure in the model using the viral

equation
1

B

1

L2 9)

> r;'F;,
ij
(i#))
where L is the length of the simulation square and we
define forces to exist only between colliding pairs of sites.

0.010
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For accepted moves, if the force is assumed to be a func-
tion of |r;|, the virial term in Eq. (9) will vanish due to
the fact that r;; changes sign during the exchange. For
collisions that do not result in exchange, r;; is constant,

and we define

ij

2mvy;

ij

(10)
-

as there is no change in potential energy and the collision
is elastic. Here we introduce the reduced time step 7,
such that {|v|)7={P(v)), that is, the average velocity is
equal to the average rate of exchange of the sites. This is
a constant determined by the algorithm and is equal to
0.5222p3'72. For all cases in which v,; is negative, no ex-
change takes place and v;; is made positive. Therefore
(v,-j) for collisions of this type is a constant determined
by the distribution. Note that this is an attractive in-
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teraction and thus a negative contribution to the pres-
sure. The remaining case corresponding to positive v;; is
that of an attempted move which is rejected, for which
(v;;) is sensitive to the configuration. The pressure cal-
culated in this manner is shown in Fig. 6. The pressure is
a smoothly increasing function of temperature with a
maximum slope at T.. The pressure is also shown for
phase-separated simulations where the effect of the inter-
face can be seen to increase the overall pressure of the
system.
The interfacial tension is defined by the relation

v=J" dylp,—p.»)] (11)
for an interface parallel to the x axis [14]. In general, the

orientation of the interface could be found by diagonaliz-
ing the pressure tensor, however, in the present simula-

0.90

tion the interface is pinned to either the x or y axis by the
periodic boundary conditions and thus we can use the
simple formula 2y =L|p, —p,|, where there are two in-
terfaces in the periodic cell. The interfacial tension is
plotted as a function of temperature in Fig. 7, along with
the exact result which is known analytically [13]. The
agreement is reasonable, except at lower temperatures
(T <1.5) where the present calculation predicts y < T as
T —0, because the calculated forces depend only on the
velocities and are proportional to the temperature in real
units. This is due to the fact that potential and kinetic
energy are only exchanged in accepted moves and there is
no provision for particles to be accelerated by arbitrarily
large repulsive forces. In other words, the calculation of
interfacial tension measures the relative acceptance rate
of exchanges across the interface. If no such moves are
accepted, then this method fails to determine the height
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of the barrier. Thus the method is only a reasonable esti-
mate for systems in which the kinetic and potential ener-
gies are of comparable magnitude and the velocity distri-
bution is perturbed to an extent that reasonably reflects
the potential interactions.

The pressure in statistical mechanics is normally
defined in terms of the derivative of the free energy with
respect to density at constant 3 and N. In the case of the
static Ising model this is of little use since the density
does not enter into the problem in any meaningful way.
There is therefore no exact function to which the results
in Fig. 6 can be compared. The exact interfacial tension is
not derived from Eq. (11) but instead arises from the cal-
culation of the free energy of an antiferromagnetic lattice
with an odd number of rows. The extent to which these
different calculations of the interfacial tension agree indi-
cates that both describe the same macroscopic property
of the system.

Near the critical point, the fluctuations of the interface
are comparable to the size of the periodic simulation
square. It is thus possible for the interface, since it is free
to move within the simulation, to change orientation on
the time scale over which statistics are collected. It is
thus important to calculate the interfacial tension over an
appropriate interval so that reasonable averages can be
obtained for the pressures, and yet the orientation of the
interface remains fixed. As a consequence, however,
large fluctuations slightly above T, will produce nonzero
values for the interfacial tension over the same interval,
and the values below 7, are systematically high. The
fluctuations are also restricted by the finite size of the sys-
tem, and the calculated values of the surface tension can
be improved by using a series of lattice sizes and extrapo-
lating to L = . The slope of the curve appears to be
reasonably well represented, however.

The interfacial tension of the two-dimensional Ising
model has also been calculated in MC simulation by
Binder [18], using finite-size scaling arguments to deter-
mine the free energy of the interface. The results there
are also systematically high, but more sophisticated

analysis gives somewhat better results. The methods used
in the traditional MC calculation, however, make use of
the symmetry of the two phases and could not be easily
applied to a system such as the model of microemulsion
where the fluctuations in the order parameter are much
different in the two coexisting phases and the chemical
potential of the two-phase equilibrium may not be known
exactly. Also, in such complex systems it may not be
possible to obtain phase separation in smaller simula-
tions, even with zero-order parameter. Finally, since the
scaling method relies on spontaneous fluctuations, it is
difficult to obtain good statistics at temperatures below
about 1.8, and in three dimensions it is limited to a range
of less than 10% of T,. Thus the present algorithm, al-
though somewhat crude, has the advantage of being
much simpler to implement and would be expected to be
applicable to a wider range of models over a wider range
in temperature.

VI. SIMULATION OF A VELOCITY GRADIENT
AND CALCULATION OF SHEAR VISCOSITY

The simulation of a constant velocity gradient was im-
plemented by defining the velocities as being relative to
an externally imposed flow in one of the coordinate direc-
tions. In the direction perpendicular to the flow, the
magnitude of the flow is incremented by a fixed amount
each lattice spacing. Since the lattice itself is not being
sheared, this allows for an arbitrary shear to be applied
uniformly at each time step. In addition, this method can
be used across the periodic boundaries, since the flow at a
site is only defined relative to its neighbors. Site ex-
changes parallel to the flow are unaffected since the ve-
locity field is the same for both sites. For exchanges per-
pendicular to the flow, the velocity components in the
flow direction are unchanged in absolute terms but their
local values must be modified to take into account the
difference in flow at the two sites. The relative velocity is
treated the same as before, but there is now a transfer of
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TABLE II. Results of simulations at a series of low shear rates at T =2.5.

Shear Shear
rate viscosity
(relative units) (units of VmJ /1)

Calculated
temperature
(units of J/kg)

Internal
energy
(units of J)

0.01 1.053
0.02 1.066
0.03 1.070
0.04 1.068
0.05 1.071
0.10 1.105

—1.11
—1.11
—1.12
—1.11
—1.11
—1.15

2.505
2.511
2.518
2.527
2.536
2.605

transverse momentum between the particles. Momentum
is conserved, but since the kinetic energy is defined in
terms of the local velocities, there is a change in kinetic
energy resulting from this change in reference that is not
a part of the Boltzmann factor which determines the ac-
ceptance or rejection of the move. There is therefore an
increase in the calculated temperature due to the shear.
Other methods of simulating shear use discrete displace-
ments of the lattice sites at periodic intervals with an oth-
erwise standard MC algorithm [19]. In this case it is
necessary to estimate the heating effect and the effects of
the discrete nature of the shear.

Using the conventional mechanical description of the
shear, the applied force necessary to maintain the veloci-
ty gradient is proportional to the net transfer along the
gradient of momentum in the flow direction. The shear
viscosity is thus defined as

Vijyx — )

acc m(
n=- 3 (12)
=9 ul?*r

for flow in the x direction with a gradient in the y direc-

tion, where the sum is over accepted exchanges in the y
direction and u is the difference in flow between adjacent
rows of the lattice. The shear viscosity was calculated at
T =2.5 as a function of shear rate, and the results are
shown in Table II, along with the calculated temperature
and internal energy. The shear rate is expressed in rela-
tive units in which (v?)=1. At very low shear rates
there is larger statistical error, and at high shear rates
there is evidence of shear-induced structural changes in
the configuration. In the intermediate range, though, the
result is essentially constant. An instantaneous
configuration corresponding to a shear rate of 0.10 in
Table II is shown in Fig. 8. The configuration shows dis-
tinct parallel domains, which also suggests the onset of a
shear-induced phase transition. However, in the present
work we did not investigate high shear rates and the
shear-induced shift in 7,. This would require maintain-
ing a consistent temperature by rescaling the velocities.
Instead, we chose to calculate shear viscosity as a func-
tion of temperature at a constant shear rate low enough
so that the perturbation to the system is minimal and we
are effectively in the limiting regime of # —0. The shear

FIG. 8. Instantaneous configuration as in
Fig. 3. The reduced shear rate is 0.10. Veloci-
ties shown are with respect to the flow veloci-
ty.
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viscosity calculated at a shear rate of ¥ =0.03 is plotted
in Fig. 9. The increase in temperature in all cases was
less than 1%. The calculated shear has a pronounced
minimum near 7. that is similar in nature to the same
feature in the diffusion constant plot. This is a reasonable
result as the transverse momentum flow is expected to be
determined by the diffusion of sites across the flow direc-
tion. Results are also shown for phase-separated simula-
tions where the phase boundary is perpendicular to the
flow direction. In this case the shear viscosity is some-
what higher as would be expected since the interface will
resist the shear.
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o

This algorithm can also be used to study forced flow
without periodic boundary conditions (that is, with fixed
walls) and around fixed barriers. Sites are introduced into
the lattice which cannot exchange and which reverse the
relative velocity of sties which collide with them. In this
case, momentum is no longer conserved and must be
periodically corrected along with the temperature. A
typical snapshot is shown in Fig. 10, in which it can be
seen that the barrier appears to wet the interface. This
type of simulation will be investigated more thoroughly
in the future. The algorithm could also be adapted to in-
clude vacancies which can be made to exchange with any

FIG. 10. Instantaneous configuration as in
Fig. 3. The center black squares are nonin-
teracting fixed sites. Velocities are shown with
the net flow past the barrier included.
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other sites moving towards them. Such a move would
conserve momentum but perturb the potential energy and
velocity distributions.

VII. CONCLUSIONS

We have introduced an algorithm for carrying out
time-dependent Monte Carlo calculations for a lattice of
interacting sites. We have performed a series of test cal-
culations using this method to study the two-dimensional
Ising model which reproduce the results of standard MC
simulations. In addition, we have used this test case to
demonstrate the calculation of dynamical quantities that
are unavailable with standard methods. In particular, en-
couraging results are presented for the calculation of
diffusion constants, interfacial tension, and shear viscosi-
ty using this algorithm.

The calculation of the diffusion constant is complicat-
ed, as expected, by the presence of long-time tails in the
velocity autocorrelation function, however, preliminary
calculations indicate that the problem is greatly reduced
in the three-dimensional case. The calculated interfacial
tension is compared to the exact results and although
discrepancies exist due to finite-size effects and limita-
tions of the algorithm, the agreement is generally quite
good over a reasonable temperature range. The calculat-
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ed restoring force in a simulated Couette flow is found to
be proportional to the shear rate in the regime where the
structure remains intact, leading to a simple calculation
of the shear viscosity.

Further applications of the method are suggested, in-
cluding the simulation of high shear rates, investigation
of shear-induced phase transitions, and exploration of the
phase diagram as a function of shear rate. Also possible
is the calculation of driven flow around fixed barriers and
in restricted geometries. The method can also be simply
extended to consider components of different masses, in-
cluding the possibility of massless vacancies such as those
found in conventional lattice gases.

There are some issues remaining to be resolved, includ-
ing the inclusion of collective motions and a more com-
plete understanding of the hydrodynamic behavior of the
system. However, the present work represents a promis-
ing beginning, and we feel that the algorithm presented
here will lead to significant gains in the understanding
and modeling of complex fluids.
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FIG. 10. Instantaneous configuration as in
Fig. 3. The center black squares are nonin-
teracting fixed sites. Velocities are shown with
the net flow past the barrier included.




FIG. 3. Instantaneous configurations of the lattice from simulation. Each plotted square represents a 2 X2 block of sites on the
lattice. Squares are shaded from light to dark according to the number of light sites in the block from 0 to 4. Arrows represent the
direction and magnitude of the average velocity of the sites in the block. (a) T=2.0, (b) T =2.5.



FIG. 8. Instantaneous configuration as in
Fig. 3. The reduced shear rate is 0.10. Veloci-
ties shown are with respect to the flow veloci-

ty.




